
THE SHIFTING ASPECTS OF TRUTH IN MATHEMATICS

ENRICO BOMBIERI

For angling may be said to be so like the mathematics, that it can never be fully
learnt; at least not so fully, but that there will still be more new experiments left
for the trial of other men that succeed us.

IZAAK WALTON, The Compleat Angler, To the Reader of this Discourse.

1. PREMISE. The English mathematician G.H. Hardy tells us the story of one of his visits to
his friend and mathematical genius Srinivasa Ramanujan, while he was lying ill on his deathbed.
This is how Hardy recalls the story of how he tried to start a conversation without asking right
away about the status of his health in [6], p.12. ‘I had ridden in taxi-cab No. 1729, and remarked
that the number seemed to me rather a dull one, and that I hoped it was not an unfavorable omen.
“No”, he replied, “it is a very interesting number; it is the smallest number expressible as a sum
of two cubes in two different ways.”’ 1

This true story is quite remarkable because it sheds light on the way a mathematician such
as Ramanujan thinks about mathematics. For many philosophers and logicians, mathematics
is a formal language which, starting from a few axioms and rules of inference, produces new
sentences. The ‘verifiable truth’ of these sentences is basically a tautology. (Assuming that
one can assign a meaning to the word truth in this context.) However, verification can be
extraordinarily complex and many working mathematicians, myself included, consider such a
point of view as irrelevant, in the same way that limiting English to just a set of words put
together by means of grammar and syntax does not suffice for understanding Shakespeare,
Dickens, or Yeats. Moreover, anyone familiar with the difficulty of translating one language
into another (the literal “away from the eye, away from the mind” could become “the blind
man is an idiot”) will agree that languages are in general not isomorphic and present subtle, but
important, differences both in structure and emphasis.

This is indeed an important subject of philosophy about which much has been written, with
important contributions by Heidegger, Wittgenstein, and Quine [10] with his influential thesis of
‘indeterminacy of translation’. The implications for mathematics of the problem of translation
are clear. Is all of mathematics expressible in a single language, or are there several distinct, not
quite comparable, mathematics, each one with its own language?

2. DIFFERENT VIEWS. For the working mathematician, the ‘Simple Platonic’ point of view
that there is only one mathematics in the Platonic world of ideas, limiting mathematics to a lan-
guage with its own grammar and syntax, is too narrow; even the modified ‘Plentiful Platonism’,

1 1729 = 123 + 13 = 103 + 93.
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which allows for the existence of an objective set of distinct mathematics (as long as they are
consistent) putting all of them on a par, is too wide and again missing the point when it comes
to describe what mathematics is or should be.

However, many mathematicians agree with the Platonic (or realist) view that mathematics
exists independently of us, but also believe the mathematical objects are not just formulas,
propositions, or theorems. Hardy’s view here is quite explicit: “A mathematician, like a painter
or poet, is a maker of patterns. If his patterns are more permanent than theirs, it is because
they are made with ideas.” Mathematics as a science of patterns is treated in the chapter by
Oliveri in [8] and is closely related to Wittgenstein’s notion of aspect. The fact that the patterns
themselves can be described by formulas is irrelevant. No one (except a computer) would
describe a painting as a collection of colored dots or, even worse, as a collection of atoms
and molecules arranged on a canvas in a certain way. Such a narrow description is clearly
inadequate. What really matters is the pattern.

Another point of view, espoused by a smaller group of theoretical mathematicians, is that
mathematics is only a construction of the mind (or the collective mind) and the role of the
mathematician is analogous to that of an architect, rather than of an explorer. This is the for-
malistic view of mathematics. Thus one has different types of mathematics according to which
constructions and rules are allowed. A serious difficulty with this approach was that freewheel-
ing infinite constructions quickly led to antinomies and paradoxes, as in early models of set
theory. (Justly famous is Russell’s Paradox, namely the impossible ‘set of all sets S with the
property that S is not an element of S’.)

A way out of such difficulties was obtained by restricting mathematical objects and proofs in
various ways, for example by barring self-referential definitions of sets or allowing only finite
constructions. Notwithstanding the fact that certain classical results of mathematics could be
reformulated and proved anew in these limited models, these theories have so far a small number
of practitioners among the working mathematicians.

At least as I can judge from talking to very distinguished colleagues, most mathematicians
usually regard mathematics as the discovery of arcane constructions, with an internal coherence
and beauty and lying in a far-away land of which we can grasp only a tiny piece at a time.
In practice, he works as a formalist in order to validate his discoveries. There are notable ex-
ceptions here and some of the greatest geometers of the 20th century, for example Poincaré,
Enriques, and the contemporary Fields medalists Thurston and Jones, considered, or consider,
strict formalism as an unnecessary baggage and an obstacle to imagination and creativity, espe-
cially when dealing with geometry. For them, the right idea and vision are more important than
a formal proof that necessarily takes only second place. Certainly, this view has many merits.
Mathematics, in the presence of the right ideas, can advance also without proofs. However,
even if the consolidation of first ideas can be postponed, it cannot be avoided altogether and
eventually it must be done if we want further progress to occur.

The first and main validation of big ideas consists in the opening of new large vistas coherent
with existing knowledge, which indicate the answers to long-standing questions, and suggest
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approaches to the solution of new problems arising from these new ideas.

Applied mathematics is somewhat different, in the sense that at least the subject of study has
its roots in the description of reality. However, it is very hard to describe actual phenomena by
simple mathematical models and finding good mathematical models may be more difficult than
the actual mathematics needed to study them.

Hardy, in his well-known short essay “A Mathematician’s Apology” ([7], p.135) puts it
bluntly in these terms: “most of the finest products of an applied mathematician’s fancy must be
rejected, as soon as they have been created, by the brutal but sufficient reason that they do not
fit the facts.” This disdaining view applies also to the way some practitioners of the so-called
‘pure mathematics’ regard the work of others. André Weil, one of the foremost geometers of
the twentieth century, referring to the flood of papers appearing in mathematical journals on the
subject of partial differential equations used to quip that it was the work of ‘elliptic engineers’.
Personally, I believe that this self-serving purist stance is damaging to science and that scientific
work is good if it reaches its objective.

My own view is that mathematics is the science of relations. What matters here is the relation
between objects, not the objects themselves. Very different objects can share the same relation.
The simplest relation is the relation of equality2 denoted by the symbol =. A deeper example
is the Laplace equation, expressing a fundamental condition for the minimum energy at which
equilibrium is attained. Patterns are aspects of relations and, sometimes, can be identified with
relations. The study of relations clarifies the task of determining the validity of mathematical
work even in the absence of proofs and may be a source of inspiration as well. At any rate, this
view of relations is clearly related to the patterns of Hardy or Oliveri.

Since relations can be taken as objects of other relations, as is the case in the branch of
mathematics called category theory, mathematics can be self-referential, in contrast to all other
sciences. Hence there is a certain risk in abandoning the information about the objects in favor
of studying only the structure of relations; it consists in being caught in a sterile game in which
research is done for its own sake, losing connection with reality and motivation and validity as
well. On the other hand, the real strength of mathematics derives from the fact that mathematics
is the study of relations between objects and therefore is of almost universal applicability. Thus
we need to understand which relations are worth studying and then integrate our understanding
of the relations with our understanding of the objects.

With the advent of the computer, traditional theoretical mathematics, long considered useless
for applications, has become available to the other sciences in unforeseen ways. Hardy’s remark
(and belief) that “real mathematics has no effects on war” (he uses the term ‘real’ opposite to
the ‘trivial’ utilitarian view of mathematics as the “grammar of size and order” propounded

2 Mathematicians tend to use the equality symbol in a loose fashion, often using the same symbol = to define a
new symbol (e.g. π = area of a circle of radius 1) and other times as a result of an operation or value of a function,
(e.g. 1 + 1 = 2). Although there are modified symbols available in the standard mathematical vocabulary to
distinguish among various notions of equality, such as := to assign a value or definition to a symbol, they are not
used consistently and the actual logical meaning of the symbol = is derived from the context in which it is used.
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by Hogben) is not valid anymore today, as witnessed by the routine use of deep parts of num-
ber theory in cryptography. Twenty years ago I would have agreed with Hardy that, fortunately,
prime number theory had no role in war or real life, but certainly this is no longer the case today.

3. TRUTH AND MATHEMATICS. Mathematics has always been a paradigm for truth. When we
want to emphasize in ordinary language the certainty of knowledge, we say “It is mathematically
certain”. The word ‘proof’ is often used as a synonym for established truth.

In contrast to other sciences, mathematical knowledge, once established, remains and is
never discarded. Results may be subject to revision, as exemplified by the discovery of alterna-
tive proofs of difficult theorems. Old theories may become fragments of larger all-encompassing
theories.

I remember a very interesting discussion I had with Thomas Kuhn about the absence, or
presence, of revolutions in mathematics. Kuhn’s view was that mathematics, since it lacked the
ultimate test of fitting with reality, could not possibly undergo revolutions in its development. A
revolution in science occurs when existing well-established theories develop to a point in which
they are in contradiction with the observation. The effect of the revolution is to create a new
understanding and rapid development of a new branch of science.

Quantum physics and relativity are prime examples of revolutions in the physical sciences,
the first arising from the failure of classical physics to explain the observed law of a black
body radiation, the second from the Michelson and Morley interferometric experiment that
showed that the motion of the earth does not change the speed of light, in total contrast with
Galileian and Newtonian mechanics. In chemistry, the discovery of elements destroyed the idea
that matter was a mix of air, water, earth, and fire. In astronomy, the Ptolemaic model of the
universe collapsed when better instruments of observation were invented.

Nothing comparable could be found in mathematics. Kuhn quickly objected to my feeble
attempts to present the discoveries of non-Euclidean geometries and of elliptic functions as
revolutions in mathematics. Non-Euclidean geometries did not diminish the validity and interest
of Euclidean geometry, he said, they only showed that the fifth postulate of Euclid was essential
for the existence and uniqueness of parallels and was not a consequence of the other postulates.
Abel’s discovery of elliptic functions perhaps was nearer to a revolution, since it led to an
explosion of research that continues unabated today, and also because it signed the demise of
the classical theory of elliptic integrals, now viewed only as the inverse functions of elliptic
functions. However, in Kuhn’s view, there was one factor missing to qualify Abel’s discovery
as a revolution, namely preceding theories were shown to be inadequate or obsolete, but still
there was no contradiction there.

The absence of contradiction in classical mathematics is an interesting phenomenon. Does
mathematics deal with truth? But what is truth? Should we view classical logic and classical
mathematics as contradiction free? Is the notion of truth absolute, or is truth identifiable with
verification, i.e. proof? Can truth, or proof, be achieved by consensus? By automatic verifi-
cation, i.e. by computer programs? Can a phrase such as “it is 99% true” be meaningful in
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mathematics? Is the tertium non datur (i.e. the law of the excluded middle) a necessary build-
ing block of mathematics? Is a purely existential statement (for example, the theorem3 that the
equation axn + byn = czn with a, b, c non zero integers and n ≥ 3 has only finitely many
solutions in coprime integers (x, y, z)) acceptable in mathematics as a valid statement?

4. DIFFERENT MATHEMATICS. I have already hinted at different ways to look at mathematics.

• Platonic realism – the numbers are primitive concepts that exist on their own. Assuming
certain axioms about numbers, other logical statements follow, as well as other concepts.
Everything about numbers follows from arithmetic. In the same way, all geometry follows
from primitive concepts such as lines and circles.

• Brouwer’s intuitionism – here the language of mathematics is restricted. Mathematical
entities do not exist until they have been constructed. The axiom of the excluded mid-
dle is not part of the system, therefore forbidding the classical ‘proof by contradiction’.
Existence proofs must be constructive. A non-constructive pigeon-hole principle is not
allowed either. Notwithstanding its apparent narrowness, many basic theorems of mathe-
matics can be proved in this system.

• Formalism – here the language of mathematics is quite ample and can be modeled by
set theory. Infinite constructions are allowed, with much more freedom than before. As
shown by Alfred Tarski, the concept of truth can be formalized in such a system.

There are other views about mathematics. Although many mathematicians consider them as
irrelevant, if not nonsensical, philosophical exercises, these views have found a good audience
with social scientists and are bound to change the way mathematics is taught in schools. If only
for this reason, they deserve our attention.

However, my personal opinion is that many of these all-encompassing theories suffer of what
I call the ‘Shoehorn Principle’, namely trying to force a big, complex subject into the too narrow
petty theory of the proposer. This reduces the validity of the new ideas which may be present
in it.

• John Stuart Mill’s empiricism – Empiricism denies that mathematics exists independently
of us. It is instead the result of empirical research, which puts mathematics on a par with
other sciences, at least on this point. Mathematical truth here is only contingent to obser-
vation. Quine and Putnam proposed a form of mathematical empiricism that dispensed
with the Platonic ontology of mathematics and justified the reality of mathematics by its
ability to describe the real world.

• Imre Lakatos’s quasi-empiricism – Quasi-empiricism, also described as post-modernism
in mathematics, questions the validity of mathematics as a whole, based on the assertion

3 A special case of a famous theorem of Gerd Faltings. As of today, there is no proven algorithm to determine
all solutions of this general equation.
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that no foundation of mathematics can be proved to exist. Thus a mathematical proof can
transmit falsity from the conclusion to the premises in the same way that it can transmit
truth from the premises to the conclusion.

• Hartry Field’s fictionalism – Mathematics is dispensable and its statements cannot talk
about reality; it is at best a useful fiction. A mathematical statement such as 1 + 1 = 2 is
meaningless in absolute and true only in the fictional world of mathematics.

• Social constructivism and social realism – In social constructivism, mathematics is a
product of culture, subject to correction and change. As such, it is only a product of
the human mind and it does not exist until it has been thought out; mathematics has no
universal connotation. Social realism goes even further, presenting a postmodernist view
of it. As with empiricism, mathematics goes through constant re-evaluation, but dictated
by the fashions of the social group doing mathematics, hence subject to the influence of
racism and ethnocentrism, or by the needs of the society financing it.

Again, while one cannot deny the presence of fashion and social factors in the development
of today’s mathematics, the very fact that major milestones such as elliptic functions and the
theory of groups were introduced by Abel and Galois, at the time young unknown mathemati-
cians working in isolation and poverty, indicates that social realism alone cannot explain by
itself why mathematics is the way it is today. A reading of the letters of Abel and Galois is the
best explanation why they were mathematicians and what they were seeking with their work,
namely knowledge of truth and not fame nor wealth.

5. TRUTH IN CLASSICAL MATHEMATICS. Hilbert proposed a program to obtain a complete
and consistent axiomatization of mathematics, starting from the reasonable assumption of the
consistency of a small number of intuitive basic axioms, as in finitary arithmetic. Hilbert’s
program in its original form was brought to a sudden halt by Gödel’s second incompleteness
theorem, that states that any sufficiently large model of mathematics (in the sense that its lan-
guage can express a large number of sentences, as in the standard model PA of Peano arithmetic)
cannot prove its consistency within itself.

Notwithstanding this drawback, the formalization of mathematics continued quite success-
fully with the Bourbaki group with the axiomatization of large parts of algebra, analysis, and
geometry. Unfortunately, the rather dogmatic approach taken by Bourbaki had a negative in-
fluence at the end, by excluding explicitly entire sectors of mathematics from consideration in
their program. The disastrous introduction in the schools of the ‘new mathematics’ based on
elementary set theory was an offshoot of the Bourbaki influence. Its negative effects are felt
even today.

Truth in classical mathematics is not an absolute about a Platonic absolute in an absolute
world of ideas. The formalization of truth in a formalistic model of mathematics is possible, as
shown by Alfred Tarski in a famous paper.
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At the basis of the difficulty of defining truth in a system with the classical axiom (A ∨ ¬A)
of the excluded middle (either A is true or the negation of A is true) is the well-known liar’s
paradox, embodied in the sentence

‘This sentence is false’

Tarski’s solution of the problem of truth is exemplified by his famous phrase (translated in
English from German)

‘Snow is white’ is true if and only if snow is white.

Here the first ‘Snow is white’ is a sentence, the second ‘snow is white’ is a proposition. The
distinction is a subtle one. For Tarski, the definition of truth in language L (i.e. an alphabet
and a collection of words and phrases according to a certain syntax) must be given in another
language, the metalanguage ML. The metalanguage ML should contain a copy of L and should
be able to talk about the sentences and the syntax of L. Also ML should contain a predicate
symbol True where True(x) means x is a true sentence of L. A definition of True should be
a sentence of the form

For all x, True(x) if and only if ϕ(x)

where True never occurs in ϕ. The equivalence ‘if and only if’ must be provable using axioms
of ML that do not contain True. Of course, one wants to be able to say that, in an adequate
definition of truth, intuitive truths become truths. This is convention T .

If the language L is big enough to talk about its own semantics, convention T makes the liar
paradox inevitable and to avoid this problem it is essential that the metalanguage ML should
be much larger than L. On suitable conditions of this type, Tarski shows that there is a single
formula ϕ in ML which defines True in L. For a language containing the standard ¬ (“not”),
∧ (“and”), ∨ (“or”), and quantifiers ∀ (“for all”) and ∃ (“there exists”) the following intuitive
truths must hold:

• ¬A is true if and only if A is not true.

• A ∧B is true if and only if A is true and B is true.

• A ∨B is true if and only if A is true or B is true.

• ∀x A(x) is true if and only if each object x satisfies A(x).

• ∃x A(x) is true if and only if there is an object x satisfying A(x).

Tarski’s definition of truth is a semantic definition and therefore is language dependent, a fact
criticized by Field and others philosophers advocating an universal concept of truth. A response



8 E. Bombieri

to this criticism is that, after all, there is no valid apriori reason to assume truth as an absolute
concept, in the same way that beauty cannot be considered an absolute concept.

The advantage of Tarski’s definition is to point out that truth in a language L can be formally
defined in a more ample language ML containing L, while truth cannot be defined inside L
itself. For the working mathematician, Tarski’s notion of truth, taking for L the mathematics
with the Zermelo–Fraenkel axioms, with L within the metalanguage of plain English (with some
caveats), is indeed a satisfactory solution that allows him to continue to explore or create new
relations and new patterns of significant mathematics.

In this context, one should note the extraordinary discovery by Kurt Gödel and Paul Cohen4

of the independence of Cantor’s continuum hypothesis CH from ZFC, yielding two distinct
mathematics, one in which CH is a valid axiom, and another mathematics in which ¬CH is a
theorem. With Tarski’s definition of truth there is no contradiction here with the axiom (A∨¬A).
Truth in the language ZFC can be defined in a metalanguage M1ZFC where True(CH) holds,
but also can be defined in another metalanguage M2ZFC where True(¬CH) holds.

For the mathematician, choosing between the two solutions is not a matter of verifying truth,
but rather of seeing whether the patterns in the first type of mathematics are preferable to the
patterns in the second type of mathematics. Certainly, ‘preferable’ is a subjective word, but one
here is guided by clear aesthetic considerations: Simplicity of arguments, linearity of patterns,
and a mathematically undefinable Aristotelian ‘fitting with reality’. It is here that intuition plays
an important role. Such choices may change with time when the accumulation of knowledge
clarifies obscure parts but, unlike art, the overall result of 2500 years of mathematics has been
the creation of a single science. This bodes well for the future.

6. TRUTH IN OTHER MODELS. Mathematicians dismiss Field’s fictionalism as irrelevant and
useless at best. For them, Field’s success in axiomatizing Newtonian mechanics without refer-
encing functions and numbers, and proceeding to show that mathematical physics is an exten-
sion of his non-mathematical system, is a meaningless tour-de-force. First of all, Newtonian
mechanics is to physics as elementary calculus is to mathematics, or like an abc book in the
world of literature, i.e. a mathematical triviality. Secondly, and more specific to the point, the
reduction of physics to Field’s non-mathematical world uses large fragments of second-order
logic, bringing back deep mathematics as a tool to sweep everything under the rug in order to
conclude that mathematics does not exist.

In a Wikipedia article on philosophy of mathematics, it was stated that, for Field, “a statement
like 2 + 2 = 4 is just as false as ‘Sherlock Holmes lived at 22b Baker Street’ – but both are true
according to the relevant fiction.” A mathematician would answer that the sentence 2 + 2 = 4
is true in the very simple language PRA of primitive recursive arithmetic and for the layman
as well, while the second statement is false as it stands, as Hardy would have said, for the
brutal but sufficient reason that Sherlock Holmes lived at 221B Baker Street, as evinced from

4 Gödel proved in 1940 that CH is consistent with ZFC. Cohen proved in 1963 that ¬CH is consistent with
ZFC.
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a fragment of the Conan Doyle story “A Study in Scarlet”, beginning of Chapter 2 (this is the
first occurrence of Sherlock Holmes’s address in the corpus of Sherlock Holmes stories).5

The empiricist view of mathematics has certain merits. It is undeniable that the natural sci-
ences have indicated to mathematicians, at crucial times, new fundamental directions to explore.
On the other hand, reducing all of mathematics to such an empirical view does not describe the
present mathematical world.

When Einstein set up his model of general relativity he found all the mathematical tools he
needed ready for use, with Riemann’s theory of differential geometry in arbitrary dimensions
and the absolute tensor calculus of Christoffel, Ricci-Curbastro, and Levi-Civita. In the other
direction, the new string theory of physics awakened the interest of mathematicians by making
extraordinary predictions about the geometry of manifolds. Mathematicians had been studying
curves for centuries, and the underlying spaces parametrizing curves of similar types (the so-
called moduli spaces) for a long time too. Physicists showed that curves and moduli spaces
could be put together in a single object with a far richer geometry than the single components
and then started making predictions. Today, the insights provided by string theory have spawned
entirely new directions of study and have been the key to solve outstanding open problems.

String theory has been used as support for empiricism. General relativity can equally be
used in the opposite way, since the mathematics here precedes the physics by many decades
and, without it, general relativity would consist only of empty words, notwithstanding Field’s
beliefs. We may talk of black holes, of the expanding universe, of quanta and quarks, as is done
in popular journalism, but physics at this level is like saying that a body falls towards the earth
in the same way as a child always goes towards his mother, a view closer to Aristotles’s than
to reality. Black holes and the expanding universe (if indeed they are true phenomena) can be
understood only in the framework of general relativity. Quanta and quarks can be understood
only in quantum theory and unified field theories, like quantum chromodynamics. Attempts to
reduce mathematics to an overly simple picture suffer precisely from the same defects present
in journalistic physics.

7. SOCIAL CONSTRUCTIVISM AND SOCIETY. Social constructivism cannot be dismissed so
simply. Mathematics, like philosophy, is studied by people and the philosophical question is
whether mathematics – with all its possible variations, as in Plentiful Platonism – exists on its
own, or is a product of experiment and experience, or just a product of a given society and social
class. After all, art history teaches us that art developed in different societies in different ways,
for different purposes.

Certaainly, the historical development of mathematics is best understood taking also into
account the material culture associated with it, such as universities, academies, publications,
as well as the general financial support of sciences. On the other hand, this is only part of the
picture and my view towards social constructivism is that it has a role in explaining the develop-
ment of mathematics during the centuries, but falls well short of explaining why mathematics

5 Wikipedia’s articles are edited on a regular basis and this error has been duly corrected.
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is today the way it is. The mathematician Fibonacci wrote his Liber Abaci at the beginning
of the thirteenth century with the aim of teaching how to count and how to use counting for
the purpose of bookkeeping, but also wrote his Liber Quadratorum dealing only with abstract
arithmetical problems with squares. Gauss is one of the founders of geodesy, but also wrote
his Disquisitiones Arithmeticae laying the foundations of the modern theory of quadratic forms
over the integers and contributed fundamental results to abstract number theory and geometry.
The notion of truth in the mathematics of Fibonacci and Gauss is the same, with proof used as
the only way to verify whether a proposition is true or false; this has little to do with empiricism
and even less with social constructivism.

Social constructivism ideology may turn out to have negative consequences for the future
development of mathematical literacy in society. It appears that its deconstructivist approach to
mathematics has been swallowed hook, line, and sinker, by certain social scientists in charge of
revising the teaching of mathematics in the schools. After the dismal failure of the introduction
of ‘new math’ in schools, caused by its excessive emphasis on abstraction, the NCTM (National
Council of Teachers of Mathematics) went on a new path, swinging the pendulum all the way in
the opposite direction. Traditional K12 math was deemed too difficult for children; the solution
to the problem ‘Johnny can’t count’ consisted to great extent in eliminating counting from the
program. It can all be done on a pocket calculator or, if the child is smart enough, by computer,
isn’t that so?

The reform is characterized by ideology, in this case by constructivism, much in the same
way the ‘new math’ was characterized by the narrow Bourbaki ideology. Here is a sample of
guiding ideas, taken from the web:

• Children must be allowed to follow their own interest in discovering mathematical knowl-
edge.

• Knowledge should be acquired as a byproduct of social interaction in a real world setting.

• General, content-independent “process” skills are the primary goals.

• Learning must be enjoyable, happy, with knowledge emerging from games and group
activities.

Unfortunately, mathematical literacy cannot be achieved by lowering the baseline and citing
the increased percentage of children above the baseline as proof of the success of the new
pedagogical ideas. I leave it to the reader to imagine the consequences of this type of teaching
at an age when minds are formed. The message is that mathematical truth is irrelevant in real
life and the only thing which matters is to give a half-hearted try to understand mathematics...
If you don’t like it, play games and watch your favorite singer on television. The net result may
very well be a renewed flourishing of private schools for the affluent segment of society. For a
serious technical critical analysis of some of these proposals, I refer to the interesting chapter
by E.G. Effros in [4].
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The reliance on machines rather than sound reasoning (leaving calculations to the computer)
makes me shudder. We have not learned the lessons we should have learned from the failure of
the first mirror of the Hubble Telescope and from the crash of the Mars probe.

The first was caused by changing, half-way in the polishing process, the system for verifying
the curvature of the mirror, replacing an established auxiliary optical tool by a better one. Un-
fortunately, the lenses in the new optical instrument had not been mounted in the correct way
and the new instrument showed readings different from the old ones. So the firm in charge of
the job, instead of asking why such a dramatic change had occurred, performed more correc-
tions to the mirror. Since it proved to be impossible to obtain interferometric images which
showed no mirror defects, only the cropped central part of these images was sent to NASA for
final approval and the faulty mirror went up in the sky with a lot of fanfare. Eventually, reality
had to set in. It took a special set of correcting lenses to bring back the Hubble telescope to
its full potential. The technology to calculate the shape of the special lenses depends on very
sophisticated mathematics special to the task and was not available in the United States, where
everything must agree with existing computer software. Fortunately, the optical engineering
division of the ETH in Zürich had the mathematical expertise and the tools to do the job.

The second failure was due to the unwarranted assumption by technical engineers in the
United States that the thrust figures for the probe landing rocket provided by scientists were
given in the system with units in pounds and inches (still used by the industry for monopolistic
reasons), rather than in the kilograms and meters used universally by physicists. So the probe
could not break its descent and crashed into smithereens on arrival. This failure was caused by
the faith in numbers per se, without anyone being able to see that a simple ‘ball-park figure’
checking would have shown the error. This is a typical example of what can happen because
of the ‘language barrier’ between two different parties, when truth has a different meaning for
them.

8. VARIATIONS ON PROOFS. The great logicians Gödel and Tarski took great pains to distin-
guish between truth and proof. Indeed, even at an elementary level there are undecidable state-
ments in PA arithmetic that become provable theorems in ZFC mathematics, a famous case
being the Paris–Harrington extension of the classical Ramsey theorem of combinatorics, see
[9]. The difficulty, in the case just mentioned, is that any proof of the Paris–Harrington theorem
requires an ε0-transfinite induction, unreachable by the ω induction allowed in PA. However,
any finite specialization of the Paris-Harrington theorem reduces to a finite calculation and is
(theoretically) provable in PRA by case enumeration.

Already, it is not obvious which rules we should allow on an intuitive basis for a proof. In
classical logic proof by contradiction is a staple of the mathematician although it is not allowed
in intuitionistic mathematics. More complicated examples come from number theory and I will
give here a concrete example. Let π(x) be the function of x > 0 which counts the number of
primes up to x and let li(x) =

∫ x

0
dt/ log t be the function called integral logarithm of x. The

prime number theorem asserts that π(x) and li(x) are asymptotically the same, in the sense that
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their ratio tends to 1 as x tends to ∞.

In 1859 Riemann found a formula for π(x) in terms of the solutions (the zeros) of a certain
equation ζ(s) = 0 where ζ(s), nowadays called the Riemann zeta function, admits a deceptively
simple description6. Riemann formulated a conjecture about the zeros of ζ(s) which turned out
to be the key to the understanding of the finer distribution of prime numbers.

The Riemann hypothesis implies, and is equivalent to, the statement that

|π(x)− li(x)| ≤ 1

8π

√
x log x

for x ≥ 2657 (L. Schoenfeld, [13]). The Riemann hypothesis is still unsolved and, for various
reasons which go beyond its implications on the distribution of prime numbers, has risen today
to the status of the most important unsolved problem in all of pure mathematics.

It is an instructive enterprise to examine the deviation of π(x) from li(x). The physicist
Goldschmidt, a friend of Riemann, provided Riemann with a numerical table showing that for
x < 3 × 106 one always had π(x) < li(x). Riemann himself commented on this remarkable
fact in his celebrated memoir on the distribution of prime numbers.7

Further calculations with the help of computers showed that this phenomenon persists for all
x < 1023.

Is this numerical evidence sufficient for believing that the result must hold in general? The
answer is a resounding “No”. In 1955, the South African mathematician Stanley Skewes proved
that there is an

x < 1010101000

for which π(x) > li(x). How was such a result proved?

Skewes’s argument is in two parts. The first, which was done in 1933, is on the assumption of
the Riemann hypothesis and produces the existence of such an x in a certain specific very large
interval. The proof of this result is sufficiently flexible to reach the same conclusion unless there
is a ‘large failure’ of the Riemann hypothesis. The second part of the argument, obtained 22
years later, depends in an essential way on the assumption of the hypothetical ‘large failure’ of
the Riemann hypothesis. By a different reasoning, it again produces an explicit extremely large
interval containing a point x for which π(x) > li(x). The larger of the two intervals is the final
one provided by Skewes. This type of logic, in which one assumes the true sentence (A∨¬A)
(the law of the excluded middle) to deduce B, is not unusual in number theory. Note that the
conclusion, where an explicit interval is computed, is deterministic in every possible sense;

6 It is the sum of the s-powers of the reciprocal of the natural numbers if the resulting series is absolutely
convergent and is otherwise defined by analytic continuation.

7 Mathematical folklore says that Riemann conjectured that π(x) < li(x) was always the case. A reading of
Riemann’s memoir shows that Riemann expressed in this context only the suggestion that “It would be interesting,
in a further development, to study the influence of each periodic term contained in the given expression for the
totality of prime numbers.” As Littlewood later showed, he was right.
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the fact that the interval is way too big for us to be able to produce (and possibly even write
down) such an x is irrelevant for abstract mathematics. Recently, Skewes’s argument has been
greatly improved and refined in many ways by several authors. On the Riemann Hypothesis,
the range of the interval has been narrowed down, after extensive computer calculations, to
[1.39792136× 10316, 1.39847567× 10316], see [2], [14].

Some mathematicians and philosophers may question the ‘truth’ of such a result on two
grounds. The first, is the use of the law of the excluded middle; this would be the case for an
intuitionist. The second, is the use of computer calculations, since we can never know for sure
what a computer does.

Other mathematicians have also expressed reservations about computer proofs or extremely
involved and complicated proofs. The first ‘proof’ of the four colors conjecture was obtained
by very heavy use of formal calculations by computer. In this case, many reservations were
put forward because of what appeared to be inefficient or insufficient programming, so it was
not clear that the computer actually had analyzed all the 1476 possible cases. All this was
eventually put to rest by a much simplified new proof, still based on similar ideas, where both
the theoretical part and the computer part could be scrutinized carefully, see [12]. The computer
analysis now requires only 20 minutes of running time and has been independently repeated on
other machines, with independent programs.

The classification of finite simple groups presents problems of different type. It is an ex-
tremely long and complex endeavor and it is fair to say that not a single person has been able
to verify everything in the proof. The number of authors who have contributed to the solution
is large (over 40) and some of the papers are very long, complex, and computational. It is here
that slips, inaccuracies, omitted or wrong analysis of subcases may occur.

I did contribute one paper with the completion of the solution of a rather difficult uniqueness
problem, namely showing that the known list of finite groups of Ree type in characteristic 3 was
indeed a complete list. Group theorists had reduced the problem to a question of algebra which,
while in principle soluble by standard methods, remained inaccessible because those methods
quickly led to formulas with more than 1050 terms, hence impossible to write down in any form.
Fortunately, I found an additional trick which showed that any formula one could obtain in this
way also implied the existence of another formula with only two terms and controlled degree
and size, thus bypassing the impossible problem of following the algebra. So I wrote a paper
which was examined rather carefully by several experts and eventually the paper was published.
The last part was a computer analysis of a few isolated cases.

Interestingly enough, two independent runs (before the publication of the paper) of the com-
puter analysis showed that the standard software used for the first run contained a serious error.
(The supposed ‘infinite precision’ arithmetic and algebra did not extend to the degree of poly-
nomials and if the degree exceeded the largest unsigned integer in the computer language it
simply gave a wrong polynomial.) This was quickly corrected and the two runs gave the same
conclusion, as expected.

Perhaps even more interestingly, my own analysis at the beginning of the paper contained a
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slip which was discovered only after its publication. I had claimed that a certain polynomial G in
several variables was irreducible. In fact, it was reducible. I had forgotten that the specialization
z1 → 1/z0 I had indicated in a footnote for verifying my assertion, could also have removed
a possible factor z0; this was precisely what had happened. This was inconsequential for the
paper, because the rather simple correction to my mistake consisted in removing the offensive
factor z0 from my definition of G, without any further change in the paper.

In other cases, authors were not so lucky and substantial revisions, if not even retractions,
had to be done.

I strongly believe that careful use of the computer tool is beneficial to the working mathe-
matician and I have no objections in principle to the use of computers. In fact, we may view our
mathematical brains as biological computers with their own operating system, slightly different
from person to person. A mathematical proof is like a program to be run on this biological
computer, with the output ‘true’, ‘false’, or the ‘I don’t understand’ that corresponds to a non-
halting state of a Turing machine. Hence the collective classification of finite simple groups is
comparable to a program running piecemeal in parallel on several machines in order to speed
up its completion.

What about proof by consensus? Human consensus is risky, but computer consensus may be
acceptable. There are computer programs which need a random additional input, besides the
initial data. Changing the random input changes the way the program runs: Sometimes it will
come to the conclusion very quickly, other times it will run for ever. (To avoid this, or excessive
run time, one gives an escape time.)

One such algorithm is Hendrik Lenstra’s elliptic curve factorization method. It routinely
factors numbers of 60 digits on a desktop, in a very short time. Here the random input is an
elliptic curve and the associated group law. The program itself uses the group law in an essential
way, because changing the elliptic curve changes the way the program runs. Depending on the
choice of the elliptic curve, the program may or may not yield a true factorization. Hence the
need of a preliminary independent fast prime–composite test for a number.

Such a program is provided by the Solovay–Strassen probabilistic primality test and its vari-
ant the so-called Miller–Rabin test, of standard use in the RSA cryptography scheme8. Here
one wants to generate very quickly prime numbers with hundreds of digits. The difficulty is
not due to lack of prime numbers, rather it is the testing for primality. Performing the test on
a number N requires an additional integer input a, called a ‘base’, chosen randomly between 1
and N − 1. If the output of the test is ‘composite’ it yields a proof of compositeness (without
factoring), but it may fail to detect compositeness, with a small probability not larger than 1/4.
So, performing the test on a number N choosing the base a at random k times, the probability of
failing to detect compositeness decreases drastically. This can be used to detect numbers with
extremely high probability of being primes. For example, taking k = 20 we have a primality

8 The new deterministic primality test of Agrawal, Kayal, Saxena [1] is of polynomial complexity, but not yet
as practical as the Miller–Rabin test. The fast probabilistic but deterministic primality test using elliptic curves of
Goldwasser and Kilian [5] is used in practice to certify primality.
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test on numbers with at most 1000 digits which is correct better than 99.9999997% of the times.
For practical use, quality control is there!

In my opinion, another mind boggling contribution of computer science to the nature of
proof, and thus indirectly to the notion of truth, is probabilistic proof checking.

In my first encounter with algebra I read how fallacious arguments (usually based on division
by 0) could ‘prove’ that 0+1 = 0. The remarkable thing is that this single statement, if assumed
true, can be used to prove quickly that all numbers are equal to 0. In a sense, the property of
a proposition being false spreads out, like a malignant growth, to invade the entire domain
to which it has access. Thus truth needs to be preserved carefully, uncontaminated by the
vicinity of untruth. In real life, lies work in the same way and, more often than not, they are
unmasked because of their consequences. Lies have long-lasting negative effects on society and
individuals.

So one may ask what is the long term effect of a false proposition or axiom in mathematics.
This is a question which very recently has attracted the attention of computer scientists and they
have come up with a result which, in my opinion, is truly extraordinary. This is the probabilistic
checkable proof, or PCP. A technical discussion of PCP is beyond the scope of this article, so
I will limit myself to a cursory description of it.

Classical proof checking is done by mathematicians in various ways. The most convincing
method (for the working mathematician) consists of several steps:

• Looking first at the basic idea of the proof, in other words breaking the proof into a small
number of smaller coherent pieces.

• Assuming that each piece is a true theorem, checking the validity of the proof of the main
result.

• Analyzing the validity of each piece by the same method.

A proof amenable to this type of break-up has many advantages. Conceptual errors emerge
early. Complex statements are broken into simpler statements of easier verification. Local
errors can be detected and fixed. The propagation of non-local errors can be followed clearly,
making it easier to correct faulty arguments, if possible at all.

Checking a computational proof cannot be brought so easily to the above format and in the
worst case it needs the dreaded procedure of ‘line-by-line checking’. Its complexity is at least
proportional to the length, or size, of the proof. In complexity theory, this type of proof checking
is in the class NP.

The experienced mathematician often is able to take shortcuts in line-by-line checking since,
at a glance, he can often guess where it is most likely to make mistakes. For example, in a hand-
written manuscript, transcribing a complex formula from the end of one page to the top of the
next page is a well-known cause of trivial errors: a minus sign becomes a plus sign, a variable
is omitted somewhere in a complex formula, and so on. However, while these shortcuts may
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show quickly that a supposed proof is incorrect, they by no means do they work all the time.
Line-by-line checking has no redeeming features: It does not look for guiding ideas and if an
error is found the paper is only good for the wastebasket. It is also time consuming.

The discovery of PCP is due to the work of several mathematicians and computer scientists.
In naive terms, PCP says that any mathematical proof can be reformulated in such a way that a
small random sampling of a few lines suffices for checking the truth or falsity of the proof, with
probability as near to 1 as we wish. The PCP theorem is formally stated as

NP = PCP(O(log n), O(1)).

The O(log n) refers to the minimum number of random bits needed by PCP to do the random
sampling, the O(1) refers to the number of bits one actually reads from the proof; in fact one
can take the O(1) to be 3, which is optimal, to get a probability of a correct checking near to
50%, after only one sampling.

This is a deep theorem whose proof draws from logic, complexity theory, probability, and
error correcting codes. A new, simpler proof of the PCP theorem has been very recently ob-
tained by Irit Dinur and we refer to Radhakrishnan and Sudan [11] for a thorough exposition
and proof of the theorem, together with an updated bibliography.

Intuitively, the PCP can be described as follows. The proof to be checked is rewritten in
a slightly larger redundant form, which is done quickly (i.e. in polynomial time), for example
by a certain software program. The crux of the matter is that this is done in such a way that
any false statement in P propagates almost everywhere inside the rewritten proof Q. Error
correcting codes are the prototypes of the method: By trasmitting a message a certain number
of times with an appropriate scrambling (as determined by an error correcting code), a certain
number of faulty bits can be restored correctly. As with error correcting codes, the upshot is
that a random line-by-line checking of a small sample of the rewritten proof has a fixed positive
probability of detecting an error.

Bernard Chazelle [3] gives a down-to-earth non-technical description as follows. A proof P
of size n admits a new proof Q, where Q has two remarkable properties. The proof Q is derived
from P by means of simple steps; the size of Q will be only O(n(log n)c) (I. Dinur). The proof
Q is written as a conjunction of three bits clauses on a set of logical variables X ; the actual
proof is Q together with a value of X for which the logical value of Q is true.

Now pick such a clause in Q at random; this means choosing the location i of the clause,
which is done in O(log n) steps, by assigning at random the O(log n) digits of i. Next, read
the values of the O(1) logical bits (in our case, only 3 bits) of the variables in S and evaluate
S. If P is true, the test will give the answer true. If P is false, the test will detect false with at
least 49.999999% probability and this will be a proof that P is false. By repeating this random
checking say 20 times, we see that if we obtain true each time then it means that P is true with
probability at least 99.9999%.

Does all this prove that P is true? No, but it also tells us something more. It shows (again
with very high probability) that any error in P , if present at all, must be ‘local’, thus indicating
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a robustness of the supposed proof. If P is false but PCP says that P should be true, then the
proof P should still be ‘fixable’ to a clad-iron proof.

As an example of how the PCP works, consider a supposed proof Q consisting of the con-
junction of two logical clauses

Q = S1 ∧ S2 = ((¬x1 ∧ x2) ∧ x3) ∧ (x1 ∧ (x2 ∨ x3))

with the assignment X = (x1, x2, x3) = (true, true, false) and let us pick up one clause S.
Now let us toss a coin and pick up the first clause if we get heads and the second one if we get
tails. If we pick up the first clause S1, the value of the clause turns out to be S1 = ((¬true ∧
true) ∧ false) = false, so the supposed proof Q will indeed be shown to be fallacious, while
if we pick the second one S2 we have the value S2 = (true ∧ (true ∨ false)) = true and we
have a “false positive” testing. The probability of such a random “false positive testing” is only
50%, so if we repeat the test independently 20 times the probability of obtaining a sequence of
20 “false positive” tests is less than one in a million.

From the point of view of complexity theory, the PCP theorem is a statement that the prob-
abilistic verification of a purported proof of a theorem is always ‘very easy’, even if finding a
proof may be exceedingly ‘hard’. In fact, the question whether finding a proof is always ‘easy’
is equivalent to the celebrated question of computer science whether P = NP or not.

To put this in perspective with the classical way of proof checking, a proof Q consists of
a conjunction of n clauses, each one involving three variables, so altogether not more than 3n
variables, together with an assignment true / false of each variable, yielding the value true for
Q. Since the total number of possible assignments can be exponentially large in n, finding a
proof by trying out all assignments is hopelessy complex. On the other hand, checking a given
assignment requires not more than O(n) operations, so it has only polynomial complexity in n,
so ‘proof checking’ is ‘easy’ in this sense. However, PCP is probabilistically extraordinarily
efficient, requiring at each stage only O(log n) bits for selecting a location for testing, followed
by testing the value of the selected clause. With O(1) tests, each one requiring only O(log n)
random bits (to select a random location in Q for testing), one can obtain an ‘almost certain’
verification of the validity of the proof. Thus we may call this type of ‘practical verification’
to be ‘very easy’, because O(1) is much smaller than O(n). (By what we have said, both
algorithms require O(log n) space, which is quite small.)

Perhaps some day we will see pre-proofs P that will be automatically encoded in a new form
Q and then checked by PCP. If Q fails the test, P will be automatically incorrect. If instead
Q passes the test, then P will be considered worth of serious consideration and only then math-
ematicians will make the serious effort of embarking in the task of checking whether P is a
formal proof or not. Alternatively, the random checking of Q will be done not 20, but instead
20000 times. Then P must be accepted as a ‘human proof’ in the human mathematical world!

9. CONCLUSION. In my view, history of mathematics shows that all these different views of
mathematics may illuminate parts of it, but are grossly insufficient to give by themselves a clear
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picture of what mathematics really is.

Mathematicians, at times, compare their work to the work of an artist. Notwithstanding the
rigidity of mathematical rules of inference, they believe that mathematics is a very creative
science. They talk all the time of beauty, elegance, strength, and depth of a new concept or of
a proof. Now beauty, elegance, strength, depth, are undeniably strongly influenced by culture
and are far from being ‘absolute’. So what gives to mathematics its monolithic structure?

Here is a personal experience which I find quite instructive. In 1973 I became interested
in the problem of classification of compact complex surfaces. After the pioneering work of
Kodaira around 1960, there remained some open questions and in particular the existence and
classification of complex surfaces without complex curves. This was a particularly tricky prob-
lem because the methods used in classification began by looking at the complex curves sitting
inside the surface, so new methods were needed. I had started thinking on the problem of the
classification of surfaces without curves when I was informed by Michael Atiyah, in a casual
conversation at a meeting in Paris, that Kodaira had just constructed such surfaces although he
did not remember how it was done. In a couple of weeks I found not only a construction, but
also proved that the new examples so found were the only ones possible, under certain natural
hypotheses. The starting point of my work was Kodaira’s third paper on the subject, which
I had studied earlier very well, but it needed adding several entirely new ideas. Since I was
aware that Kodaira had obtained something similar, I wrote to Kodaira informing him of my
conversation with Atiyah, including a copy of my rather long manuscript. About two weeks
later I received Kodaira’s answer. It informed me that his student Inoue had been working on
the problem for some time and had also obtained a little earlier the same result, and included
Inoue’s long manuscript. I was at first surprised to see that the two manuscripts were almost
identical, including the new notation introduced in them, but the true reason for this was that
there was only one logical way to attack the problem. Only at the most delicate point of the
proof the two manuscripts were essentially different. Since Inoue had clear priority about the
result and since my own paper more or less followed the same proof, I felt that there was no
point in publishing my own version of the solution and I informed Kodaira of this. Very kindly,
Inoue added a note in his final published paper acknowledging my independent solution.

What I find striking here is that two mathematicians working independently on the same
problem ended with writing almost identical papers, with almost exactly the same logical se-
quences of formulas. Some may view this as a proof of the strength of cultural influence, in this
case Kodaira’s work. To me, this is one more example that some parts of mathematics are very
rigidly set up and that there is some ineluctability in the way mathematics evolves. The unity
of language in mathematics is certainly a cultural phenomenon, but its very existence is, in my
opinion, a reflection of the inner unity of mathematics. Mathematics has determined its own
language, and not viceversa.

Mathematical concepts are not arbitrary. Here is a simple example. We could do Euclidean
geometry without the concepts of triangle and polygons and talk instead about finite sets of
points assembled in a circular ordering (this allows polygons with self-intersecting sides). What
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is gained with the primitive notion of triangle is that polygons with non-intersecting sides (an
interesting class by itself, for example they have an intuitive notion of area) are all decompos-
able in triangles. In order to study general polygons, we may study first the simplest subclass,
namely triangles, and then study how polygons are assembled from triangles. Since this method
proved to be successful, the concept of triangle remains even today as a useful primitive concept
of geometry.

My conclusion is that mathematics follows a kind of Darwinian evolution, where compli-
cated concepts are eventually abandoned in favor of simpler ones and new concepts are intro-
duced with the purpose of unifying and simplifying existing ones. The “Ockham razor” philos-
ophy is relevant to mathematics. Some mathematical theories and models survive in harmony
with each other, while others die for lack of interest, or because of their unnecessary extreme
complication, or simply because they are absorbed within better and ampler theories. At times,
we may even see different “mathematical species” appear in the mathematical world.

All this is consistent with the view that mathematics is a theory of relations and patterns.
Truth in mathematics is not absolute and is directly related to language or, better, to a larger
metalanguage where the meaning of truth is close to common sense. Therefore, mathematical
truth is not irrelevant, nor tautological; it is the glue that holds the fabric of mathematics to-
gether. It is up to us to work to maintain the integrity of mathematics, its intellectual attraction,
as well as its connections with other sciences and all other aspects of human endeavor.
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